Josef Leydold
Short Universal Generators Via Generalized Ratio-of-Uniforms Method

Original Citation:

Leydold, Josef
(2000)
Short Universal Generators Via Generalized Ratio-of-Uniforms Method.

This version is available at: https://epub.wu.ac.at/348/
Available in ePub^{WU}: July 2006

ePub^{WU}, the institutional repository of the WU Vienna University of Economics and Business, is provided by the University Library and the IT-Services. The aim is to enable open access to the scholarly output of the WU.
Short Universal Generators Via Generalized Ratio-of-Uniforms Method

Josef Leydold

Department of Applied Statistics and Data Processing
Wirtschaftsuniversität Wien

Preprint Series
Preprint 34
June 2000

http://statmath.wu-wien.ac.at/
SHORT UNIVERSAL GENERATORS VIA GENERALIZED RATIO-OF-UNIFORMS METHOD

JOSEF LEYDOLD

Abstract. We use inequalities to design short universal algorithms that can be used to generate random variates from large classes of univariate continuous or discrete distributions (including all log-concave distributions). The expected time is uniformly bounded over all these distributions for a particular generator. The algorithms can be implemented in a few lines of high level language code.

1. Introduction

In the last decade several approaches have been introduced for so called universal (or black box) methods for generating non-uniform random variates. Recent papers propose methods where a hat function that approximates the respective probability density function or probability vector is constructed (see e.g. Ahrens (1993), Hörmann (1995), Ahrens (1995), Evans and Swartz (1998), Leydold (2000a), Leydold (2000b); Hörmann and Derflinger (1996), Hörmann and Derflinger (1997)). These methods have (extremely) fast marginal generation time, but require a setup step, which is expensive compared to the average cost of generating one random variate. Although this setup step can be made short at the price of a much higher marginal generation time (e.g. Gilks and Wild 1992) the resulting algorithms are rather complex.

Another approach by Devroye (1984b) on the other hand uses universal inequalities that hold for every log-concave distribution. The algorithm for continuous random variates is based on the following proposition.

Theorem 1 (Devroye (1986), §VII.2.5, Theorem 2.4). If \(f \) is a log-concave density with mode \(\mu = 0 \) and \(f(0) = 1 \), then writing \(q \) for \(F(0) \), where \(F \) denotes the c.d.f. of the distribution, we have

\[
f(x) \leq \begin{cases}
 \min(1, e^{1-x/(1-q)}), & (x \geq 0) \\
 \min(1, e^{1+x/q}), & (x < 0)
\end{cases}
\]

(1) The area under the bounding curve is 2.

If \(F(\mu) \) is not known, a modified universal hat exists with area 4 (see Devroye (1986), §VII.2.3). In both cases these universal hats are not optimal. Devroye (1984b) derives the properties of the optimal hat and provides a (rather expensive) generator for the corresponding distribution. The areas below the optimal bounding curves are \(\pi^2/6 \) and \(\pi^2/3 \), respectively, i.e., about 18% better. Algorithms that

Key words and phrases. non-uniform random variates, universal method, ratio-of-uniforms method, transformed density rejection, discrete distributions, continuous distributions, log-concave distributions, T-concave distributions.
utilize this theorem can be found in Devroye (1986). Devroye (1987) gives an analogous result for discrete log-concave distributions.

In Leydold (2001) the ratio-of-uniforms method is used to derive more general inequalities that were used to compile faster and simpler algorithms that work for a larger class of distributions, including all log-concave distributions. As in Devroye's algorithm and in opposition to other black-box algorithms, hardly any setup step is required. Thus it is superior in the changing parameter case.

In this paper this approach is extended. We introduce universal bounding curves based on the generalized ratio-of-uniforms method by Wakefield, Gelfand, and Smith (1991). The new algorithms are still universal and the expected numbers of uniform random numbers are uniformly bounded for each of these algorithms. They are applicable to a large class of so called T-concave distributions (Hörmann 1995) at the expense of higher marginal generation times. For the subclass of heavy-tailed T-concave distributions these inequalities can be used to compile even faster algorithms. Therefore they complement the universal algorithm introduced by Devroye (1984a) (see also Devroye (1986, §VII.3.2)) that uses moments of monotone distributions.

The new bounding curves can also be used to derive general upper bounds for probability density functions of T-concave distributions. These are optimal in the sense that constructing any better majorizing function requires more information about such a density function.

2. RATIO-OF-UNIFORMS AND T-CONCAVE DISTRIBUTIONS

2.1. Ratio-of-uniforms. The ratio-of-uniforms method introduced by Kinderman and Monahan (1977) is a flexible method that can be adjusted to a large variety of distributions. It has become a popular transformation method to generate non-uniform random variates, since it results in exact, efficient, fast and easy to implement algorithms. It is based on the following (slightly modified) theorem.

Theorem 2 (Kinderman and Monahan 1977). Let \(f(x) \) be a positive integrable function with support \((x_0, x_1)\) not necessarily finite. If \((V, U)\) is uniformly distributed in \(A = \{ (v, u) : 0 < u \leq \sqrt{f(v/u + \mu)}, \ x_0 < v/u + \mu < x_1 \} \),

then \(X = V/U + \mu \) has probability density function \(f(x)/|f| \).

For sampling random points uniformly distributed in \(A \), rejection from a convenient enveloping region is used, usually from the minimal bounding rectangle. Its boundaries have to be calculated analytically for each distribution. If \(A \) is convex, however, it is easy to construct a universal bounding rectangle without computing these boundaries (see below).

2.2. T-concave distributions. A probability density function \(f(x) \) is called T-concave if there exists a monotonically increasing, differentiable transformation \(T(x) \) such that \(T(f(x)) \) is concave. A distribution is called T-concave if its probability density function is T-concave. The transformed density rejection method is an acceptance/rejection technique that uses T-concavity of a large class of distributions to construct hat function and squeeze for the density automatically (see Hörmann (1995) or Evans and Swartz (1998) for details). Hörmann (1995) suggests the family \(T_c \) of transformations with \(T_0(x) = \log(x) \) and \(T_c(x) = -x^c \) for \(-1 < c < 0, \ (c \leq -1 \) is possible for densities with compact domain.) If a function
f is T_{c_1}-concave then it is also T_c-concave for every $c < c_1$ (Hörmann 1995). An equivalent transformation is $T_c(x) = (x^c - 1)/c$, for $c \neq 0$, and $T_0(x) = \log(x)$, also known as Box-Cox-transformation. It is continuous in c for $c = 0$.

Stadlober (1989) and Dieter (1989) have clarified the relationship of the ratio-of-uniforms method to the ordinary acceptance/rejection method. It can be viewed as rejection from a table-mountain shaped density (see Figure 2). Leydold (2000a) has shown a deeper connection to transformed density rejection. Moreover, a full characterization of all distributions with convex region A is derived.

Theorem 3 (Leydold 2000a). $A(f)$ is convex if and only if $f(x)$ is T-concave with transformation $T(x) = -1/\sqrt{x}$, i.e., if and only if $-1/\sqrt{f(x)}$ is a concave function.

Notice that this class of T-concave distributions includes all log-concave distributions.

2.3. Universal inequalities.

Using the convexity of $A(f)$ for this class of distributions we arrive at the following proposition (see Figure 1).

Theorem 4 (Leydold 2001, Theorems 4 and 5). For a distribution with density f, c.d.f. F and mode μ let

$$
R = \{(v,u) : 0 \leq v \leq v_r, 0 \leq u \leq u_m\},
$$

$$
Q = \{(v,u) : -v_m \leq v \leq v_m, 0 \leq u \leq u_m\},
$$

and

$$
S = \{(v,u) : v_l u \leq u_m v \leq v_r u, v_l (u_m - u) \leq u_m v \leq v_r (u_m - u)\},
$$

where

$$
u_m = \frac{\sqrt{f(\mu)}}{f(\mu)}, \quad v_l = -F(\mu) v_m, \quad v_r = (1 - F(\mu)) v_m.
$$

Then for any T-concave distribution with $T(x) = -1/\sqrt{x}$ we find

$$
S \subset A \subset R \subset Q.
$$
Moreover
\[2|S| = |A| = \frac{1}{2} |R| = \frac{1}{4} |Q| \]
where \(|A|\) denotes the area of \(A\).

Notice that only the knowledge of \(F(\mu)\) is required, e.g., \(F(\mu) = \frac{1}{2}\) for symmetric distributions, or \(F(\mu) = 0\) for monotonically decreasing densities. Moreover, \(Q\) does not depend on \(F(\mu)\) at all. By equation (7) the rejection constant of an algorithm that uses Theorem 4 is 2 when \(F(\mu)\) is known and 4 otherwise.

Theorem 3 is proved by means of an appropriate transformation (see Theorem 6 below). This transformation can be used to derive universal upper and lower bounds for \(T\)-concave distributions (Leydold 2001, Theorem 7), see Figure 2.

![Figure 2. Universal hat and squeeze for gamma(3) distribution. Original scale (l.h.s.) and transformed scale (r.h.s.)](image)

3. A generalization

Theorem 5 (Wakefield, Gelfand, and Smith 1991). Let \(f(x)\) be a positive integrable function with support \((x_0, x_1)\) not necessarily finite. Let \(g\) be a strictly increasing differentiable function on \([0, \infty)\) such that \(g(0) = 0\), and let \(k\) and \(\mu\) be constants. Suppose the pair of variables \((V, U)\) is uniformly distributed over the region
\[A_g = A_g(f) = \{(v, u): 0 < u \leq g^{-1}[k f(v/g'(u) + \mu)], x_0 < v/g'(u) + \mu < x_1\}, \tag{8} \]
then \(X = V/g'(U) + \mu\) has probability density function \(f(v)/f\).

Wakefield et al. (1991) have suggested power functions \(g_r(u) = u^{r+1}/(r + 1), r > 0\) and \(k = 1/(r + 1)\). Then equation (8) becomes
\[A_r = A_r(f) = \{(v, u): 0 < u \leq r+1/\sqrt{f(v/u^{r} + \mu)}, x_0 < v/u^{r} + \mu < x_1\}. \tag{9} \]
The minimal bounding rectangle for \(A_r\) is given by (see Wakefield et al. (1991))
\[R_{mbr} = \{(v, u): v^- \leq v \leq v^+, 0 \leq u \leq u_m\} \tag{10} \]
where
\[
\begin{align*}
u_m &= \sup_{x_0 < x < x_1} \frac{r+1}{\sqrt{f(x)}} \\
v^- &= \inf_{x_0 < x < x_1} (x - \mu) |f(x)|^{r/(r+1)} \\
v^+ &= \sup_{x_0 < x < x_1} (x - \mu) |f(x)|^{r/(r+1)}
\end{align*} \tag{11}
\]
There also exists a generalization of Theorem 3. Consider the following regions

\[B_r(f) = \{(v, w) : 0 < w \leq |f(v/w + \mu)|^{r/(r+1)}, \ x_0 < v/w + \mu < x_1 \} \]

\[\mathcal{G}(f) = \{(x, y) : 0 < y \leq f(x), \ x_0 < x < x_1 \} \]

\[T_c(f) = \{(x, y) : 0 < y \leq -(f(x))^{c}, \ x_0 < x < x_1 \} \]

\(\mathcal{G}(f) \) is the region between the graph of \(f \) and the \(x \)-axis. \(T_c(f) \) is the region below the graph of the transformed density \(T_c(f(x)) \).

Theorem 6. \(B_r(f) \) is convex if and only if \(f(x) \) is \(T_c \)-concave with \(c = -\frac{r}{r+1} \).

Transformations between the above regions play a crucial role for the proof of this theorem as well as for the further development of the theory of this type of generation methods. Consider the transformations

\[\Phi_{AB} : \mathbb{R} \times \mathbb{R}^+ \rightarrow \mathbb{R} \times \mathbb{R}^+, \quad (V, U) \mapsto (V, W) = (V, U^r) \]

\[\Phi_{BG} : \mathbb{R} \times \mathbb{R}^+ \rightarrow \mathbb{R} \times \mathbb{R}^+, \quad (V, W) \mapsto (X, Y) = (V/W + \mu, W^{(r+1)/r}) \]

\[\Phi_{GT} : \mathbb{R} \times \mathbb{R}^+ \rightarrow \mathbb{R} \times \mathbb{R}^-, \quad (X, Y) \mapsto (X, Z) = (X, -Y^c) \]

Notice that \(\Phi_{AB} \) maps \(A_r \) one-to-one onto \(B_r \). Analogously for \(\Phi_{BG} \) and \(\Phi_{GT} \).

Proof of the Theorem. Let \(c = -\frac{r}{r+1} \). The transformation

\[\Phi_{BT} = \Phi_{GT} \circ \Phi_{BG} : \mathbb{R} \times \mathbb{R}^+ \rightarrow \mathbb{R} \times \mathbb{R}^-, \quad (V, W) \mapsto (\frac{V}{W} + \mu, -W^{\frac{r+1}{r}}) = (\frac{V}{W} + \mu, -\frac{1}{W}) \]

maps \(B_r \) one-to-one onto \(T_c \). Notice that \(f \) is \(T_c \)-concave if and only if \(T_c \) is convex. Thus it remains to show that \(B_r \) is convex if and only if \(T_c \) is convex, and consequently that straight lines remain straight lines under transformation \(\Phi_{BT} \).

Let \(ax + by = d \) be a straight line in \(T_c \). Then \(a(v/w + \mu) - b/w = d \) and \(a v + (1 - d) w = b \), i.e., a straight line in \(B_r \). Analogously a straight line \(a v + b w = d \) in \(B_r \) is mapped onto the line \(ax + dy = a \mu - b \) in \(T_c \). \(\square \)
The transformation \(\Phi_{\mathcal{A}_r} = \Phi_{\mathcal{B}_r} \circ \Phi_{\mathcal{A}_r} : (V, U) \mapsto (X, Y) = (V/U^r + \mu, U^{r+1}) \) has Jacobian \(r + 1 \) and thus Theorem 5 follows for the power function \(g(u) = u^{r+1}/(r + 1) \). (For an arbitrary function \(g(u) \) the proof is completely analogously.) Moreover

\[
|A_r(f)| = \frac{f f / (r + 1)}.
\]

Remark. For \(r = 1 \) we have \(\mathcal{B}_1 = \mathcal{A}_1 = \mathcal{A} \) (equations (12), (9) and (2)). Thus Theorems 2 and 3 are corollaries of the respective Theorems 5 and 6.

3.1. A universal envelope. Now let \(f(x) \) be a \(T_r \)-concave density function with \(c = -\frac{r}{r+1} \) and mode \(\mu \). Define \(\mathcal{A}_r^+ = \{(v, u) \in \mathcal{A}_r : v \geq 0\} \), \(\mathcal{A}_r^- = \{(v, u) \in \mathcal{A}_r : v \leq 0\} \), and analogously \(\mathcal{B}_r^+ \) and \(\mathcal{B}_r^- \). By Theorem 6, \(\mathcal{B}_r^+ \) is convex and thus contains the triangle with vertices at \((0, 0)\), \((0, u_m^r)\) and the extremal point with coordinates \((v^+, u^+_m)\), where \(\mu \geq 0 \) (see Figure 4). Then transformation \(\Phi_{\mathcal{A}_r} \) maps this triangle into a three-side region in \(\mathcal{A}_r \) of area

\[
\int_0^{v^+} \left([u_m^r + v(u_m^r - u_m^r)/v^+]^{1/r} - [v u_m^r/v^+]^{1/r} \right) dv = \frac{v^+ u_m^r}{r + 1} \frac{\mu - u_m}{v^+_m - u_m^r}.
\]

By the convexity of \(\mathcal{B}_r^+ \) this cannot exceed \(|\mathcal{A}_r^+| \) and consequently

\[
v^+ \leq |\mathcal{A}_r^+| \frac{r + 1}{u_m} \frac{u_m^r}{u_m - u_m} = |\mathcal{A}_r^+| \frac{1}{u_m} \frac{r + 1}{(u_m/u_m)^r - 1}.
\]

Using (14) and the fact that \(|\mathcal{A}_r^+| = (1 - F(\mu)) \cdot |\mathcal{A}| \) we arrive at

\[
v^+ \leq (1 - F(\mu)) \left(\frac{1}{u_m} \frac{(u_m/u_m)^r - 1}{(u_m/u_m) - 1} \right).
\]

An analogous (lower) bound can be derived for \(v^- \). Thus we have the following universal envelopes.

Theorem 7. Let \(f(x) \) be a \(T_r \)-concave density function with \(c = -\frac{r}{r+1} \), \(r > 0 \), and mode \(\mu \). Let \(F \) denote the c.d.f. of the distribution and let

\[
\mathcal{R}_r = \{(v, u) : (v/u_m) \leq v \leq \nu_r(u), 0 \leq u \leq u_m\}
\]

\[
\mathcal{Q}_r = \{(v, u) : -\nu_m(u) \leq v \leq \nu_m(u), 0 \leq u \leq u_m\}
\]

(18)
where

\[u_m = \frac{r^s}{\sqrt{f(\mu)}} \quad v_m(u) = \left(\frac{f(f)}{(ru_m)^s} \right) \left(\frac{s}{(ru_m)^{s-1}} \right) \]

\[v_\ell(u) = -F(\mu) v_m(u) \quad v_\ell(u) = (1 - F(\mu)) v_m(u) \]

(19)

Then \(A_r \subset R_r \subset \mathcal{Q}_r \) and

\[|R_r| = \frac{r + 1}{r} (\gamma + \psi(r + 1)) |A_r| \quad \text{and} \quad |Q_r| = 2 |R_r| \]

(20)

where \(\gamma = 0.577216 \ldots \) denotes Euler’s (gamma) constant and \(\psi(z) = \Gamma'(z)/\Gamma(z) \) the Digamma function (also known as Euler’s psi function). The envelopes \(R_r \) and \(Q_r \) are optimal.

Proof. By equation (17) every point \((v, u) \in A_r\) satisfies the respective conditions for \(R_r \) and \(Q_r \) in equation (18). Consequently \(A_r \subset R_r \subset \mathcal{Q}_r \). It remains to verify (20). From (19) and (14) we find

\[|R_r| = |R_r^+| + |R_r^-| = \int_0^{u_m} \left(\frac{f(f)}{(ru_m)^s} \right) \left(\frac{s}{(ru_m)^{s-1}} \right) du = \int_0^{u_m} |A_r| \frac{r + 1}{r} (\gamma + \psi(r + 1)) |A_r| \

\]

where the last equality follows from formula 8.361(7) in Gradshteyn and Ryzhnik (1994, p.952).

Figure 5 illustrates the situation for the Cauchy distribution and \(r = 3 \). Figure 6 plots the ratio of \(R_r/|A_r| \) against \(r \). Generating points uniformly distributed over \(R_r \) requires an appropriate enveloping region. Transformed density rejection can be used to construct such a region. We need the following two lemmata.

Lemma 8 (Derflinger 2000). \(\frac{x^\frac{1}{r}}{x^\frac{1}{r-1}} \) is convex for \(r \geq 1 \) and \(x \in [0, 1) \).

Proof. The proposition is trivial for \(r = 1 \). Thus assume \(r > 1 \). By a straightforward computation we find

\[\left(\frac{x}{(x - 1)} \right)^r = \frac{x^{r^2 - 1} - r^2 - 1 - (r - 1)}{r - 1} \]

which is greater than or equal to 0 if and only if the second factor is not greater than 0, i.e., if and only if \(A(x) = x^{r^2 - 1} - x^r - (r - 1) \leq 0 \). Notice that \(A'(x) = x^r + x^{r^2 - 1} \) and \(A'\left(1\right) = 0 \), \(A'(x) \geq 0 \). Hence \(A(x) \) is monotonically increasing and, since \(A'(1) = 0 \), \(A(x) \leq 0 \) and the proposition follows.

\[\Box \]

Lemma 9. Let \(\tau(x) = -\frac{x^r - 1}{x^r - 1} \) and let \(a = \tau(x_0) - x_0 \) and \(b = \tau'(x_0) \) for an \(x_0 \in (0, 1) \). Assume \(r \geq 1 \), then

\[-\frac{a + b x}{a + b x} \geq \frac{x^r - 1}{x^r - 1} \]

for all \(x \in [0, 1] \).

Proof. By Lemma 8, \(\tau(x) \) is concave. Thus we find the tangent in \(x_0, a + b x \geq \tau(x) \), for all \(x \in [0, 1] \). Now notice that \(\tau'(x) = (x^r - 1)^{-2} \left(1 + r x^{r-1} \right) \), and \(\lim_{x \to 1} \tau'(x) = (r - 1)/(2r) \geq 0 \), by l’Hospital’s rule. Thus, by the concavity of \(\tau(x), \tau'(x) > 0 \) for all \(x \in (0, 1) \), i.e., \(b > 0 \). Hence \(a + b x \leq a + b \). Notice that \(\tau(x) \geq 0 \) is the tangent of \(\tau \) with construction point \(x_0 \) evaluated at \(x = 1 \). By the concavity of \(\tau, a + b \) is maximized in \(x_0 = 0 \). Hence \(\tau(x) \leq a + b x \leq a + b \leq \tau(0) + \tau'(0) = 0 \). Consequently \(-1/(a + b x) \geq -1/r(x) \) and the proposition follows.

\[\Box \]

The following enveloping region for \(R_r \) has been suggested by Derflinger (2000).

Theorem 10. Let \(f(x) \) be a \(T_r \)-concave probability density function with \(c = -\frac{r}{r+1} \), \(r \geq 1 \), and mode \(\mu \). Let \(F \) denote the c.d.f. of the distribution. Let

\[x_r = 1 - 2.187/(r + 5 - 1.28/r)^{0.9460} \]

(21)
and denote \(a_r = \tau(x_r) - x_r \tau'(x_r) \) and \(b_r = \tau'(x_r) \), where \(\tau(x) = -(x - 1)/(x^r - 1) \). Let

\[
\mathcal{R}_r = \{(v, u): \tilde{v}_r(u) \leq v \leq \tilde{v}_r(u), 0 \leq u \leq u_m\}
\]

\(\tilde{Q}_r = \{(v, u): -\tilde{v}_m(u) \leq v \leq \tilde{v}_m(u), 0 \leq u \leq u_m\} \)

where

\[
u_m = \frac{r + 1}{2r} \sqrt{\mu}, \quad \tilde{v}_m(u) = (ff) / (r \nu_m) \frac{1}{u_n + b_r/(a \nu_m)} \tilde{v}_m(u) \quad \tilde{v}_r(u) = (1 - F(\mu)) \tilde{v}_m(u)
\]

Then \(\mathcal{A}_r \subset \mathcal{R}_r \subset \tilde{Q}_r \) and

\[
|\mathcal{R}_r| = \frac{r + 1}{r} \log \left(\frac{a_r}{a_r + b_r} \right) |\mathcal{A}_r| \quad \text{and} \quad |\tilde{Q}_r| = 2 |\mathcal{R}_r|.
\]

Proof. \(\mathcal{A}_r \subset \mathcal{R}_r \subset \tilde{Q}_r \) follows immediately from Theorem 7 and Lemma 9. To verify (24) we find \(|\mathcal{R}_r| = |\mathcal{R}_r^+| + |\mathcal{R}_r^-| = \int_0^{\theta_m} |\mathcal{A}_r| \frac{r + 1}{r} \frac{1}{u_n + b_r/(a \nu_m)} du = |\mathcal{A}_r| \frac{r + 1}{r} \int_0^{\theta_m} \frac{1}{u_n + b_r/(a \nu_m)} du = |\mathcal{A}_r| \frac{r + 1}{r} \log(a_r/(a_r + b_r)). \) \qed

Remark. The parameters for \(x_r \) in equation (21) have been found by minimizing the area of \(\mathcal{R}_r \). Numerical computations show that \(|\mathcal{R}_r| < 1.13 |\mathcal{R}_r| \).

To generate points uniformly in \(\mathcal{R}_r \) we have to generate random variables with density proportional to \(h(x) = -1/(a + bx) \) on \([0, 1]\). This can be done by inversion. Notice that \(a + bx < 0 \) for all \(x \in [0, 1] \). The c.d.f. is given by

\[
H(x) = \frac{\log(a/(a + bx))}{\log(a/(a + b))}
\]

and thus we find for the inverse of the c.d.f.

\[
H^{-1}(u) = \frac{\phi(\exp(-u \log(a/(a + b))) - 1)}{1 - \phi(\exp(-u \log(a/(a + b))) - 1)}.
\]

Using the above results we can compile algorithm GSRDUC.

Algorithm GSRDUC

Require: p.d.f. \(f(x) \), parameter \(r > 1 \), area \(f \), mode \(\mu \);

c.d.f. at mode \(F(\mu) \) (optional)

```plaintext
// Setup s/
1: \( p \leftarrow 1 - 2.187/(r + 5 - 1.28/r)^{0.9448} \).
2: \( b \leftarrow (1 - r \, p^{r - 1} + (r - 1) \, p^r) / (p^r - 1)^2 \).
3: \( a \leftarrow -(p - 1)/(p^r - 1) - pb \).
4: \( u_m \leftarrow \frac{r + 1}{2r} \sqrt{\mu}, \quad v_m \leftarrow (f) / (r u_m) \).
5: if \( F(\mu) \) is provided then
6: \( v_l \leftarrow -F(\mu) \, v_m, \quad v_r \leftarrow v_m + v_l \).
else
8: \( v_l \leftarrow -v_m, \quad v_r \leftarrow v_m \).
// Generator s/
9: repeat
10: Generate \( W \) uniformly on \((0, \log(a/(a + b)))\).
11: Generate \( Z \) uniformly on \((v_l, v_r)\).
12: \( U \leftarrow (\exp(-W) - 1) \, a/b \).
13: \( V \leftarrow Z/(a + bU), \quad U \leftarrow U \, u_m \).
14: \( X \leftarrow V^{r + 1} + \mu \).
15: until \( U^{r + 1} \leq f(X) \).
16: return \( X \).
```
Remark. There is no need for an algorithm for \(r < 1 \) since then the much simpler and faster algorithm that applies Theorem 4 can be used (see algorithm SRGV in Leydold (2001)).

Remark. It should be noted that for \(r \to 0 \) we have \(c \to 0 \) and \(T_r \to \log \). Moreover, we find \(\lim_{r \to 0} \frac{1}{\Gamma(1+r)}(\gamma+\psi(r+1)) = \pi^2/6 \). The optimal algorithm by Devroye (1984b) (see remark after Theorem 1) is thus a limit case of the new method. However, this is of purely theoretical interest, since the regions \(A_r \) become long and skinny when \(r \) tends to 0.

3.2. A universal squeeze. Analogously to Theorem 4 there exists an (optimal) squeeze for \(A_r \). Figure 5 illustrates the situation for the Cauchy distribution and \(r = 3 \).

![Figure 5. \(A_r \), universal bounding envelopes \(R_r \) and \(\tilde{R}_r \), and universal squeeze \(S_r \) for the Cauchy distribution. (\(r = 3 \)](image)

Theorem 11. Let \(f(x) \) be a \(T_r \)-concave probability density function with \(c = -\frac{r}{r+1}, \)
\(r > 0 \), and mode \(\mu \). If \(F(\mu) \) is given, where \(F \) denotes the c.d.f. of the distribution, then there exists a set \(S_r = S_r(f) \), such that \(S_r \subseteq A_r(f) \). We have \((V, U) \in S_r \) if and only if either

\[
0 \leq \frac{V}{U^r} \leq \frac{\tilde{v}_r}{v_m} \quad \text{and} \quad U^r \tilde{v}_r + V r v_m^r \leq \tilde{v}_r v_m^r \tag{25}
\]

or

\[
0 \geq \frac{V}{U^r} \geq \frac{\tilde{v}_r}{v_m} \quad \text{and} \quad U^r \tilde{v}_r + V r v_m^r \geq \tilde{v}_r v_m^r. \tag{26}
\]

where \(u_m \) is as defined in Theorem 7 and \(\tilde{v}_r = (1 - F(\mu))(ff)/u_m \) and \(\tilde{v}_r = -F(\mu)(ff)/u_m \). Moreover

\[
|S_r| = |A_r| \left(1 - 1/(r+1)^{1/r}\right). \tag{27}
\]

Proof. By Theorem 6, \(B_r(f) \) is convex. Let \(S_r \) denote the universal squeeze region (which might be empty) and let \(C = \Phi_{AB}(S_r) \) denote the corresponding region in \(B_r \). Assume that \(A_r^+ \neq \emptyset \). Let \(\Delta \) be the triangle defined by the set of all points \((v, u^r)\) that satisfy the inequalities \(v \geq 0, v/u^r \leq \tilde{v}_r/u_m^r \) and \(u^r \tilde{v}_r + v r v_m^r \leq \tilde{v}_r u_m^r \). Its vertices are \((0, 0), (0, u_m^r)\) and \((\tilde{v}_r/(r+1), v_m^r/(r+1))\). Define \(C^+ = \{(v, u) \in C : v \geq 0\} \) and \(R_r^+ = \{(v, u) \in R_r : v \geq 0\} \). Every straight line through a point
\[(V, U^r)\] with \((V, U) \in \mathcal{R}_r^+ \setminus \mathcal{A}_r^+\) that does not intersect \(\mathcal{B}_r^+\), is transformed by \(\Phi_{AB}^{-1}\) into a curve that splits \(\mathcal{R}_r^+\) into two parts such that (i) \(\mathcal{A}_r^+\) and the edge \((0, 0)(0, u_m)\) are completely contained in the left hand part, and (ii) the area of the left hand part must be at least \(\mathcal{A}_r^+\). \(\mathcal{S}_r^+\) is then the intersection of the left hand parts of all such curves. Consequently \(\mathcal{C}^+\) must be contained in the triangles with respective vertices at \((0, 0), (0, u_m)\) and \((r, 0)\) and \((0, 0), (0, u_m)\) and \((r, (u_m, u_m))\), where \(v_r(u)\) is the bounding curve for \(\mathcal{R}\) given in equation (19). Notice that \(v_r(u_m) = \tilde{v}_r\) and \(v_r(0) = \tilde{v}_r/r\), and thus the respective right hand vertices are \((\tilde{v}_r/r, 0)\) and \((\tilde{v}_r, u_m)\). Since the intersection of these triangles is given by \(\Delta\), we have \(\Delta \supseteq \mathcal{C}^+\). Now notice that \(\mathcal{C}^+\) is convex, because it is the intersection of triangles. It remains to show that the vertex \((\tilde{v}_r/r + 1), u_m/(r + 1)\) \(\in \mathcal{C}^+\), since then \(\Delta \subset \mathcal{C}^+\). A straight line through \((a, 0)\) and \((b, u_m)\) is given by
\[
v = w/u_m (b - a) + a,
\]where \((a, b)\) is point on that line. Hence the transformed curve (using \(\Phi_{AB}^{-1}\)) is given by \(v = u'/u_m (b - a) + a\) and for the area of the left hand side region in \(\mathcal{R}_r^+\) cut off by this curve we find \(\int_0^{u_m} (u'/u_m (b - a) + a) du = (b + r a) u_m/(r + 1)\). By constraint (ii) this must be \(\geq \mathcal{A}_r^+ = \tilde{v}_r u_m/(r + 1)\). The latter equality follows from (14) and the definition of \(\tilde{v}_r\). Hence \(b + r a \geq \tilde{v}_r\). Now suppose \(\tilde{v}_r/(r + 1), u_m/(r + 1)\) \(\notin \mathcal{C}^+\). Then by (28) \(\tilde{v}_r/(r + 1) > (u_m/(r + 1))/u_m (b - a) + a\) and thus \(\tilde{v}_r > b + r a\), a contradiction. Therefore \(\Delta \subset \mathcal{C}^+\). Consequently \(\mathcal{C}^+ = \Delta\) and the inequality (25) follows. Analogously we find a set \(\mathcal{C}^+\) and inequality (26) for the left hand rectangle \(\mathcal{R}_r^+\).

To verify (27) we can compute \(|\mathcal{S}_r^+|\) in the same way as equation (15). We only have to replace the vertex \((v^+, u_m^+)\) by the vertex \((\tilde{v}_r/(r + 1), u_m/(r + 1))\), i.e., we have to replace \(v^+\) by \((1 - F(\mu))/|u_m/(r + 1)| = (1 - F(\mu))|A_r|/u_m\) and \(u_r\) by \(u_m/(r + 1)^{1/c}\) in equation (15). Since \(|\mathcal{S}_r^-| = |\mathcal{S}_r^+|^c, (27) follows by a straightforward computation. \(\square\)
4. T_r-CONCAVE DISTRIBUTIONS

The envelopes and squeezes introduced in the previous section can be used to derive general upper and lower bounds that hold for all T_r-concave distributions. It is a straightforward computation. Universal majorizing and minimizing functions for the density function are obtained by applying the transformation $\Phi_{BG} \circ \Phi_{AB}$ (see eq.13) on the respective boundaries of R_r and Q_r (Theorem 7), and S_r (Theorem 11). We only give the upper bounds that do not require the evaluation of the c.d.f. at the mode. All other bounds can be derived in completely the same way.

Theorem 12. Let $f(x)$ be a T_r-concave density function with $c = -\frac{1}{r+1}$, $r > 0$, and mode μ. Let $u_m = \frac{r+1/f(\mu)}{\int f(\mu)}$ (as in Theorem 7) and $x_m = \int f(\mu)$. Define $\theta: (0, \infty) \to (0, \infty)$ and $\psi: (0, \infty) \to (0, \infty)$ by

$$\theta^{-1}(x) = x \frac{1-x^{r+1}}{1-x} \quad \text{and} \quad \psi(x) = \theta^{r+1}(x) \frac{f(\mu)}{\int f(\mu)}.$$ (29)

Let

$$h(x) = \begin{cases} f(\mu) & \text{for } -x_m \leq x - \mu \leq x_m \\ f(\mu)/\psi(|x - \mu|) & \text{otherwise} \end{cases} \quad \text{(30)}$$

Then $h(x) \geq f(x)$ for all x.

Proof. First notice that $\theta^{-1}: (0, \infty) \to (0, \infty)$ is strictly monotonically increasing and $\theta^{-1}(0) = 0$. Hence its inverse map θ exists and is well defined. This can easily be seen, since $(\theta^{-1})'(x) = (1 - (r + 1)x^{r+1})(x - 1)^2$ is positive for all $x > 0$, because the denominator is always non-negative and the numerator $1 - (r + 1)x^{r+1}$ is 0 for $x = 1$, strictly monotonically decreasing for $x \in (0, 1)$ and strictly monotonically increasing for $x > 1$ (use its derivative).

Now $\Phi_{BG} \circ \Phi_{AB}: (V, U) \to (V/\mu, U^{r+1})$ maps the bounding curve of Q_r into the graph of a hat function for the density f. The straight line through the upper edge of Q_r in Theorem 7 is mapped into $y = u_m^{r+1} = f(\mu)$. The bounding curve $v(u) = \int f(\mu) (u / u_m)^{r+1} \cdot u / u_m$ is mapped into the curve given by $y = u_m^{r+1}$ and $x(y) - \mu = v(u)/u = (\int f(\mu) (u / u_m)^{r+1})^{-1} \cdot (u_m / u) = (\int f(\mu) (u / u_m)^{r+1})^{-1} \cdot y$. Hence $\int \sqrt{v(y)} = \int \sqrt{f(\mu) \theta^{-1}(y)}$ and $y(x) = f(\mu) / \psi(x - \mu)$ for $x \geq \mu$. Since the right upper vertex of Q_r is given by $((\int f(\mu)) / u_m, u_m)$ the corresponding vertex in the graph of the hat function is at $x = v/u = (\int f(\mu)) / f(\mu) = x_m$. We get an analogously result for the left hand bounding curve. Thus the result follows. \qed

This upper bound can be applied to sample from the T_r-concave distribution. For sampling from the hat distribution the inverse-cdf method (Devroye 1986, §IV.6.3, p.178) can be used. However this requires an appropriate hat function to $\int \sqrt{\theta^{-1}(x)}$ similar to those in Theorem 10.

Remark. The bound of Theorem 12 is optimal in the sense that any improvement requires more information about the distribution besides the location of the mode and the c.d.f. at the mode.
Remark. By our construction of the hat function in Theorem 12 the rejection constant \(\alpha \) follows immediately from equation (20), i.e.,

\[
\alpha = \alpha_{\text{univ}}(r) = \frac{r + \frac{1}{r} (\gamma + \psi(r + 1))}{1 + \gamma}.
\]

(To be more precise: this is the rejections constant when we use \(F(\mu) \) for constructing the hat.) Another way to construct a mountain-table shaped hat for a \(T_r \)-concave density is by means of transformed density rejection with the mode of the density and two points on either side of it as construction points. By the theory developed by Derflinger it is possible to optimize such a hat function for a given density (Derflinger et al. 2002). The rejection constant \(\alpha \) is then bounded from above for a given \(c = -r/(r + 1) \) by

\[
\alpha \leq \alpha_{\text{tdr}}(r) = \frac{1}{1 - (1/(r + 1))^{1/r}}.
\]

It is also shown that this bound is sharp, i.e., for any \(r \geq 0 \) there exists a \(T_r \)-concave density where equality holds in (32). It is interesting to note that \(\alpha_{\text{univ}}(1) = \alpha_{\text{tdr}}(1) \), \(\alpha_{\text{univ}} > \alpha_{\text{tdr}} \) for \(r < 1 \), and \(\alpha_{\text{univ}} < \alpha_{\text{tdr}} \) for \(r > 1 \), see Figure 7. Consequently, the performance of the simple generator that is based on Theorem 7 is better than the worst-case performance of a more specialized generator based on TDR with three points of contact.

5. Heavy-tailed distributions

We call a distribution a heavy-tailed \(T_r \)-concave distribution, \(c < 0 \), if its probability density function \(f(x) \) is \(T_r \)-concave and \((x - \mu) f(x)^{-c} \) is monotonically increasing on \(\mathbb{R} \). Notice that for densities with support not equal to \(\mathbb{R} \) this only may hold if it is monotone with support \((-\infty, \mu) \) or \((\mu, \infty) \).

Again let \(\mu \) be the mode of the density \(f \) and define \(A^+_r \) and \(B^+_r \) as in §3.1. If we have a heavy-tailed \(T_r \)-concave distribution, \(B^+_r \) is convex and contains the triangle with vertices at \((0, 0)\), \((0, u^+_m)\) and \((v^+, 0)\), where \(u^+_m \) and \(v^+ \) are defined by (11). Moreover if \(B^+_r \) contains a boundary point \((v_b, u^+_b)\), \(v_b > 0 \), then \(B^+_r \) also contains the quadrangle with vertices at \((0, 0)\), \((0, u^+_m)\), \((v_b, u^+_b)\) and \((v_b, 0)\). By
transformation \(\Phi^{-1}_{AB} \) it is mapped into a four-sided region in \(A_r \) of area

\[
\int_0^{u_m} \left(u_m + e^{(u^*_m - u_m^*)/v_b} \right)^{1/r} dv = v_b \frac{r}{r+1} \frac{u_m^{r+1} - u_m^{r+1}}{u^*_m - u_m^*} \tag{33}
\]

which cannot exceed \(|A_r^+| \). Thus we find analogously to \(\S 3.1 \)

\[
v_b \leq (1 - F(\mu)) \left(\frac{1}{r} \int u_m \left(\frac{u_m}{u^*_m} \right)^{r-1} - 1 \right) \tag{34}
\]

An analogous (lower) bound can be deduced for a boundary point \((v_b, u_b^*)\) with \(v_b < 0 \). Thus we have the following universal envelopes.

Theorem 13. Let \(f(x) \) be a heavy-tailed \(T_r \)-concave density function with \(c = -\frac{r}{r+1}, r > 0, \) and mode \(\mu \). Let \(F \) denote the c.d.f. of the distribution and let

\[
R_r = \{(v, u) : v_2(u) \leq v \leq v_r(u), 0 \leq u \leq u_m \}
\]

\[
Q_r = \{(v, u) : v_m(u) \leq v \leq v_m(u), 0 \leq u \leq u_m \}
\]

where

\[
u_m = r^{1/r} \sqrt{F(\mu)} \quad v_m(u) = (ff)/(r u_m) \left(\frac{u_m}{u^*_m} \right)^{1-r-1} \]

\[
v_r(u) = -F(\mu) v_m(u) \quad v_r(u) = (1 - F(\mu)) v_m(u) \tag{36}
\]

Then \(A_r \subset R_r \subset Q_r \) and

\[
|R_r| = -\frac{1}{r} \left(\gamma + \psi \left(\frac{1}{r+1} \right) \right) |A_r| \quad \text{and} \quad |Q_r| = 2 |R_r| \tag{37}
\]

where \(\gamma = 0.577216 \ldots \) denotes Euler’s (gamma) constant and \(\psi(z) = \Gamma'(z)/\Gamma(z) \) the Digamma function (also known as Euler’s psi function).

Proof. By the above considerations it remains to verify (37). From (36) and (14) we find

\[
|R_r| = |R_r^+ + R_r^-| = \int_0^{\mu} \left(\frac{u_m}{u^*_m} \right)^{1-r-1} du = \int_0^{\mu} \frac{u_m^{r+1} - u_m^{r+1}}{u^*_m - u_m^*} \left(\frac{u_m}{u^*_m} \right)^{1-r-1} \left(\frac{u_m}{u^*_m} \right)^{-1} \left(\frac{u_m}{u^*_m} \right)^{r+1} du = |A_r| \frac{1}{r} \int 1 \left(\frac{z}{z+1} \right)^{r+1} dz. \]

Substitute \(t \) for \(z^{r+1} \) yields

\[
|Q_r| = 2 |R_r| \quad \text{for the integral, where the last equality follows from formula 8.361 (7) in Gradshyten and Ryzhnik (1994, p.952). Thus the result follows.} \]

The envelopes \(R_r \) and \(Q_r \) in Theorem 13 are optimal. Figure 8 illustrates the situation for Student’s distributions with \(\nu = 1/3 \) degrees of freedom. Notice that \(R_r / |A_r| \) converges to 1 when \(r \rightarrow \infty \) (see Figure 9).

Generating points uniformly over \(R_r \) requires an appropriate enveloping region. Using a rectangle is the most convenient one. Notice that \(\frac{u_m}{u^*_m} \left(\frac{u_m}{u^*_m} \right)^{r+1} \) is maximized at \(u = 0 \) in \([0, u_m] \). Thus we find the following (minimal) bounding rectangle for \(R_r \).

Theorem 14. Let \(f(x) \) be a heavy-tailed \(T_r \)-concave density function with \(c = -\frac{r}{r+1}, r > 0, \) and mode \(\mu \). Let \(F \) denote the c.d.f. of the distribution and let

\[
\bar{R}_r = \{(v, u) : \bar{v}_2 \leq v \leq \bar{v}_r, 0 \leq u \leq u_m \}
\]

\[
\bar{Q}_r = \{(v, u) : \bar{v}_m \leq v \leq \bar{v}_m, 0 \leq u \leq u_m \}
\]

where

\[
u_m = r^{1/r} \sqrt{F(\mu)} \quad \bar{v}_m = (ff)/(r u_m) \left(\frac{u_m}{u^*_m} \right)^{1-r-1} \]

\[
\bar{v}_r(u) = -F(\mu) \bar{v}_m \quad \bar{v}_r(u) = (1 - F(\mu)) \bar{v}_m \tag{39}
\]
Figure 8. \mathcal{A}_r and universal bounding envelopes \mathcal{R}_r and $\mathcal{\tilde{R}}_r$, and universal squeeze \mathcal{S}_r for Student’s distribution with $\nu = 1/3$ degree of freedom. ($r = 3$)

Figure 9. Respective ratios of $|\mathcal{\tilde{R}}_r|$, $|\mathcal{R}_r|$ and $|\mathcal{S}_r|$ to $|\mathcal{A}_r|$ as functions of r for heavy-tailed distributions

Then $\mathcal{A}_r \subset \mathcal{\tilde{R}}_r \subset \mathcal{Q}_r$ and

$$|\mathcal{\tilde{R}}_r| = \frac{r + 1}{r} |\mathcal{A}_r| \quad \text{and} \quad |\mathcal{Q}_r| = 2 |\mathcal{R}_r|.$$ \hspace{1cm} (40)

Although the envelope $\mathcal{\tilde{R}}_r$ is not optimal for small r, we find that $|\mathcal{\tilde{R}}_r|$ converges to $|\mathcal{R}_r|$ for $r \to \infty$ (see Figure 9). In particular we have $|\mathcal{\tilde{R}}_r| < 1.1 |\mathcal{R}_r|$ for $r \geq 4$. So it is only necessary to find sophisticated generators for the distribution with density proportional to $\frac{1}{x^{r+1}}$ if r is small. For $r = 1$, $\frac{r + 1}{r}$ reduces to $1/(z+1)$.

We also can find a universal squeeze for heavy-tailed distributions.

Theorem 15. Let $f(x)$ be a heavy-tailed T_c-concave probability density function with $c = -\frac{1}{r+1}$, $r > 0$, and mode μ. If $F(\mu)$ is given, where F denotes the c.d.f. of the distribution, then there exists a set $\mathcal{S}_r = \mathcal{S}_r(f)$, such that $\mathcal{S}_r \subset \mathcal{A}_r(f)$. We
have \((V, U) \in S_r\) if and only if
\[
\bar{v}_r (u_m^r - U^r) \leq r \ u_m^r V \leq \bar{v}_r (u_m^r - U^r) \tag{41}
\]
and
\[
\bar{v}_r (r + 1) \leq V \leq \bar{v}_r (r + 1) \tag{42}
\]
where \(u_m\) is as defined in Theorem 13 and \(\bar{v}_r = (1 - F(\mu))(ff)/u_m\) and \(\bar{v}_r = -F(\mu)(ff)/u_m\). Moreover
\[
|S_r| = |A_r| \left(1 - 1/(r + 1)^{(r+1)/r}\right). \tag{43}
\]
Proof. Since every heavy-tailed \(T\)-concave distribution is \(T\)-concave, inequality (41) follows immediately from Theorem 11. Furthermore notice that \(\bar{v}_r (r + 1), u_m^r/(r + 1)\) is contained in the transformed squeeze region (in \(B^+_r\), see proof of Theorem 11). Moreover if \(B^+_r\) contains a boundary point \((v_b, \ u_b^r)\), then \(B^+_r\) also contains the quadrangle with vertices at \((0, 0), (0, u_m^r), (v_b, u_b^r)\) and \((v_b, 0)\) (as show above). Thus (42) follows.

To verify (43) we compute
\[
\int \left(u_m^r + w/v_b (u_b^r - u_m^r) \right)^{1/r} dw = \frac{r}{r + 1} u_m v_b \left(u_b^r/u_m^r \right)^{r+1}/r - 1 \tag{44}
\]
Using the vertex \(\bar{v}_r (r + 1), u_m^r/(r + 1)\) for \((v_b, u_b^r)\) gives \(v_b = \bar{v}_r (r + 1) = (1 - F(\mu))(ff)/u_m\) and \(u_b = u_m^r/(r + 1)^{1/r}\). Then (44) reduces to \((1 - F(\mu)) |A_r| \left(1 - 1/(r + 1)^{(r+1)/r}\right)\). Then (44) reduces to \((1 - F(\mu)) |A_r| \left(1 - 1/(r + 1)^{(r+1)/r}\right)\) and the result follows from the analogous considerations for \(B^+_r\). \(\square\)

Remark. If \(f\) is the probability density function of a heavy-tailed \(T\)-concave distribution for a particular \(c\), then this does not hold for any other \(c' \neq c\). Indeed \((x - \mu)^{-c}\) is increasing and bounded only if \(f\) behaves asymptotically as \(x^{1/c}\) for \(x \to \infty\). Thus for any \(c' \neq c\), \((x - \mu)^{-c'}\) either converges to 0 or is unbounded.

Now let \(f\) be a differentiable function. Devroye (2000) calls the largest \(c \leq 0\) with \((T_c(f(x))|T_c(f(x))|) \leq 0\ the \(T\)-concavity of \(f\) at \(x\), denoted by \(w_c f(x)\). (We set \(w_c f(x) = -\infty\) if no such \(c\) exists.) Then a monotonic decreasing density is heavy-tailed \(T\)-concave if and only if \(f\) is \(T\)-concave and \(c = \lim_{x \to \infty} w_c f(x) > -1\). An analogous characterization holds for monotonically increasing and symmetric densities. Some standard distributions (e.g. \(t\)-distributions) have the property, that \(w_c f(x)\) is monotonically decreasing on \((\mu, \infty)\) and increasing in \((-\infty, \mu)\).

6. Discrete distributions

Devroye (1987) has introduced a universal hat for discrete log-concave distributions. Now he applied the design of a black box algorithm. In Leydold (2001) a faster and more generally applicable algorithm based on the ratio-of-uniforms method has been introduced. Therefore it is not amazing that a version of Theorem 10 can be found for discrete distributions. However some modifications are necessary.

A discrete distribution with probability vector \(p_i\), with support \(I \subseteq \mathbb{Z}\), is called \(T\)-concave if
\[
T(p_i) \geq \frac{1}{2}(T(p_{i-1}) + T(p_{i+1})) \quad \text{for all } i \in I. \tag{45}
\]
For log-concave distributions we have $T(x) = \log(x)$ and $p_i^2 \geq p_{i-1} p_{i+1}$. Obviously p_i is unimodal. Denote its mode by μ. For the following assume that p_i is T_r-concave with $c = -r/(r+1)$ for $r > 0$. Let

$$f_p(x) = \begin{cases} p \left[x \right] & \text{for } [x] \in I \\ 0 & \text{otherwise} \end{cases} \quad (46)$$

where $\lfloor x \rfloor$ denotes the largest integer not greater than x. Since f_p is a step function, $B_r(f_p)$ cannot be convex, where B_r is defined by (12). The outer vertices of B_r (its “spikes”) are given by $(i + 1 - \mu) p_i / (r+1), p_i / (r+1) \}$ for all $i \geq \mu$, and $(i - \mu) p_i / (r+1)$ for all $i \leq \mu$, with $i \in I \subseteq \mathbb{Z}$ (use transformation Φ_B from eq. (13)). Let $(v^+ \), \ u^+)$ be the right extremal point of B_r and let Δ_r denote the triangle with vertices at $(0,0), (0, u'_m)$ and (v^+, u^+) in $B_r = \{(v, u) \in B_r : v \geq 0 \}$. Notice that by inequality (45) there are no outer vertices of B_r in the interior of Δ_r. Let Δ_A be the image of Δ_r under transformation Φ_{AB}^{-1}.

Lemma 16. $|\Delta_A| \leq |A|^t$, where $A_+ = \{(v, u) \in A_r : v \geq 0 \}$.

Proof. For the proof we again need the transformation (13). Denote the images of Δ_r under the respective transformations Φ_B and $\Phi_C \circ \Phi_B$ by Δ_r and Δ_r. The latter transformation $\Phi_C \circ \Phi_B$ maps straight lines into straight lines (see proof of Theorem 6). Thus Δ_r is a convex (unbounded) polygon. Moreover the edge $(0, 0) \in A_r$ is mapped into the y-axis.

Now assume $u_m = 0$. Then Δ_r is bounded only by the images of the edges $(0,0) \in A_r$ and $(0, u'_m) \in A_r$. Since both are straight lines, they are subsets of T_r, $c = -r/(r+1)$, by inequality (45). Hence $\Delta_r \subseteq T_r$ and consequently $\Delta_A \subseteq A_+^t$ and the proposition follows.

If $u > 0$ then edge $(0, u'_m) \in A_r$ of Δ_r is contained in the quadrangle Q_B with vertices in $(0, u'_m), (0, u'_m), (v^+, u^+)$ and (v^+ , u^+), see Figure 10 (h.s.). Using $\Phi_B \circ \Phi_C$, Q is mapped into a set Q_T which again is a quadrangle by Theorem 6, see Figure 10 (r.h.s.). Notice that we find for the areas $|Q_T \cap \Delta_r| = |Q_T|/2$ and $Q_T \cap T_r \geq |Q_T|/2$. Figure 10 shows the “worst case” where equality holds in (45) for all i between the mode and the point that corresponds to the extremal point (v^+ , u^+). Now we can use transformation Φ_{AB}^{-1} to map Q_T into a set Q_G. We have to show that $|\Delta_G| \leq \theta_+^t$, where $\theta_+ = \{(x, y) \in \theta : y \leq f(x) \}$. Then the result follows due to the fact that the Jacobian of $\Phi_B \circ \Phi_{AB}$ is constant and thus $|\Delta_A| \leq |A_+^t|$ follows as proposed.

Now let Q_G denote the image of Q_T under transformation Φ_{AB}^{-1}. To verify $|\Delta_G| \leq \theta_+^t$ it is sufficient to show that the area of the image of $Q_T \cap T_r$ under transformation Φ_{AB}^{-1}, i.e. $Q_G \cap \theta_+$, is larger than the area of the image of the triangle $Q_T \cap \Delta_r$, i.e. $Q_G \cap \Delta_r$. The absolute value of the Jacobian of Φ_{AB}^{-1} is given by $1/e(-y)^{1/\theta-1}$ which is decreasing for decreasing y, since $y < 0$. Hence we immediately find (see r.h.s. of Figure 10) $|Q_G \cap \Delta_r| \leq |Q_G|/2$. To see that $Q_G \cap \theta_+ > |Q_G|/2$ notice that we can split Q_T horizontally along the upper edges of the bars in Figure 10. In each of these parts the shaded region that belongs to T_r has at least the same area as its complement outside. Moreover the shaded part is more concentrated towards the x-axis than its complement. Thus if we look at the images of this region and of its complement under transformation Φ_{AB}^{-1} the area of the former is always greater than the area of the latter and thus $Q_G \cap \theta_+ > |Q_G|/2$. Hence $|Q_G \cap \Delta_r| > |Q_G \cap \Delta_\theta$ and the result follows. □
It is obvious that an analogous result holds for \mathcal{A}_r^- and we arrive at the following proposition analogously to our considerations of Theorem 7. Notice that $\sup_{i \leq \mu} p_i = p_{\mu-1}$.

Theorem 17. Let $p_i, i \in \mathbb{Z}$, be a T_r-concave probability vector with $c = -r/(r+1)$, $r > 0$ and mode μ. Let F denote the c.d.f. of the distribution and let

$$
\begin{align*}
 u_t &= \frac{t^{r+1}}{\sqrt[p]{\mu - 1}} \quad v_t(u) = \left(\sum p_i \right) / (r u_t) \left(\frac{u}{u_t} \right)^{r-1} \\
 u_r &= \frac{r^{r+1}}{\sqrt[p]{\mu - 1}} \quad v_r(u) = \left(\sum p_i \right) / (r u_r) \left(\frac{u}{u_r} \right)^{r-1}
\end{align*}
$$

where we set $v_t(u) = 0$ if $u_t = 0$. Let $R_r = R_r^- \cup R_r^+$ with

$$
\begin{align*}
 R_r^- &= \{(v, u) : -F(u) v_t(u) \leq v \leq 0, 0 \leq u \leq u_t \} \\
 R_r^+ &= \{(v, u) : 0 \leq v \leq (1 - F(u)) v_r(u), 0 \leq u \leq u_r \}
\end{align*}
$$

and $Q_r = Q_r^- \cup Q_r^+$ with

$$
\begin{align*}
 Q_r^- &= \{(v, u) : v_t(u) \leq v \leq 0, 0 \leq u \leq u_t \} \\
 Q_r^+ &= \{(v, u) : 0 \leq v \leq v_r(u), 0 \leq u \leq u_r \}
\end{align*}
$$

Then $\mathcal{A}_r \subseteq R_r \subseteq Q_r$ and

$$
|R_r| = \frac{r + 1}{r} (\gamma + \psi(r + 1)) |\mathcal{A}_r| \quad \text{and} \quad |Q_r| = 2 |R_r|
$$

where $\gamma = 0.577216...$ denotes Euler’s (gamma) constant and $\psi(z) = \Gamma'(z)/\Gamma(z)$ the Digamma function (also known as Euler’s psi function).

For sampling uniformly from Q_r and R_r the envelopes from Theorem 10 can be used. It is straight forward to find a universal squeeze analogously to continuous distributions. Furthermore bounds for discrete heavy-tailed T_r-concave distributions exist.

Acknowledgements

This work was supported by the Austrian Science Foundation (FWF), project no. P12805-MAT.
REFERENCES

University of Economics and Business Administration, Department for Applied Statistics and Data Processing, Augasse 2-6, A-1090 Vienna, Austria

E-mail address: Josef.Leydold@statistik.wu-vien.ac.at

URL: http://statistik.wu-vien.ac.at/staff/leydold/